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Episodes of forest mortality have been widely observed in recent 
decades1,2. Such abrupt transitions in land cover impact local 
species composition and ecosystem services, as well as the 

global carbon balance2,3. Predictive approaches to climate-induced 
forest mortality are now proliferating either through modelling of 
plant physiological dynamics4–6 or by inferring relations with hydro-
climatic stresses7–9. However, given the complexity of mortality at 
the individual tree10,11 and ecosystem levels12,13, compounded by 
uncertainties in model structure and parameterization, predicting 
mortality using vegetation models alone remains challenging14,15. 
Relations between hydroclimatic stress and mortality provide 
another predictive approach9,16, although its efficacy can be under-
mined by acclimation of vegetation properties and community 
competition. As these two approaches entail estimation of water and 
carbon budgets within the soil–plant system subject to projected 
climatic variability, uncertainties in these estimations are bound to 
influence the accuracy and uncertainty of mortality.

Here, we propose an alternative approach for predicting climate-
induced forest mortality through the direct monitoring of vegeta-
tion dynamics. The resilience or the recovery rate from a deviated 
state is generally reduced near the tipping point where a shift in 
the system state occurs17. Here, the reduction in resilience can be 
caused by impaired physiological functions (Supplementary Fig. 1)  
that make the current forested state no longer stable or at least more 
vulnerable to transition under stochastic perturbations18,19. As a 
result, around the tipping point, the forest ecosystem can be nudged 
into a degraded dynamical regime such as one with a different forest 
composition or cover (for example, shrub land or grassy open area). 
These transitions can either be catastrophic or non-catastrophic 
depending on the configuration of the degraded state20. In either 
case, a consequence of reduced resilience or the critical slowing 
down near the tipping point is high temporal autocorrelation17. 
This property was leveraged in a recent study21 to assess spatial pat-
terns of static forest resilience. The idea of static resilience obtained 
for a given time period using autocorrelation can be extended 
to a dynamic metric to track temporal variations in resilience22.  

This study develops such a metric and evaluates the potential of 
using reduced resilience as an early warning signal (EWS) for 
impending climate-induced mortality. Here, an EWS is defined as 
abnormally low resilience measured by abnormally high lag-1 auto-
correlation in vegetation dynamics (see Supplementary Notes for 
definitions of terms related to EWS).

Detecting an EWS
Previous studies17,23,24 demonstrated the effectiveness of using an 
increased lag-1 temporal autocorrelation within a moving window 
as an EWS to abrupt changes. However, most of these studies were 
based on fully defined theoretical systems or control experiments 
and took advantage of sufficiently long time series. Application of 
this method in a ‘real’ ecosystem set-up is expected to be more chal-
lenging, in part due to the limited duration of the available time 
series, the presence of dominant seasonal frequencies in variations 
of both ecosystem response and forcing signals, variations in auto-
correlation of the forcing signals and the presence of stochastic 
noise24. These challenges have partly contributed to the scarcity of 
examples detecting critical slowing down in real natural systems22.

For these reasons, a Bayesian dynamic linear model (DLM) (see 
Methods and Supplementary Methods) is proposed. Similar to pre-
vious studies25,26, the DLM uses a Kalman filter to evaluate time-
varying autocorrelation. However, here the DLM also accounts for 
temporal variation of other components, including intrinsic sto-
chastic noise, long-term trends and the seasonality inherent in both 
observed vegetation dynamics and climate forcings. Accounting 
for the variation in climate forcing can provide critical information 
for EWS detection26 thereby improving its accuracy, especially by 
avoiding false alarms that arise from increasingly autocorrelated cli-
mate conditions (Supplementary Methods, Supplementary Fig. 5). 
Using the DLM and relevant climate data, the time-varying autocor-
relation of normalized difference vegetation index (NDVI) was esti-
mated for each 30 m pixel in Landsat 7 images for all forested areas 
in the state of California, USA, the study area. Mortality in the study 
area has been widely observed in recent years27, with the potential 
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to reduce the gross primary productivity both locally and across 
North America through eco-climate teleconnections28. A probabil-
ity distribution of autocorrelation was obtained from the DLM at 
each time point during the period 1999–2015.On the basis of the 
estimated mean and uncertainty range of autocorrelation at each 
time point, the EWS was identified as the presence of a mean auto-
correlation exceeding a threshold and lasting for at least 3 months. 
The threshold was computed as the long-term average of the 80th 
percentile of the estimated autocorrelation uncertainty range. The 
magnitude of this threshold, which is constant in time, provides a 
reference for defining the abnormal range of the EWS. An example 
application of the DLM on a pixel in the southern Sierra dominated 
by pines shows that the autocorrelation in NDVI time series became 
abnormally high, that is, exceeded the long-term average of its 80th 
percentile of the uncertainty range, after October 2012 (Fig. 1b). 
Abnormally low NDVI (ALN) that may indicate foliage shedding 
was identified in September 2014 (Fig. 1a) and eventual mortality 
was observed in July 2015. No mortality or fire was observed in 
the previous years. The presence of abnormally high autocorrela-
tion, that is, reduced resilience, from October 2012 onwards serves 
as an EWS, with lead times of 23 months and 33 months to ALN 
and mortality, respectively, in this case. Although high autocor-
relation is a typical signature of critical slowing down, it does not 
guarantee the occurrence of critical slowing down and an impend-
ing critical transition; that is, it is necessary but not sufficient. To 
further examine the representativeness of the EWS for critical 
slowing down, an independent analysis of NDVI data within the 
context of a nonlinear dynamic model of vegetation dynamics with 
two stable states was conducted. The two stable states in the model 
represent an existing vegetation cover and an alternative state19. The 
analysis suggests that during the period when an EWS was iden-
tified, the system slowed down and the basin of attraction shrank 
(Supplementary Discussion, Supplementary Fig. 15). These shifts 
represent reduced recovery rate and a higher likelihood of a switch to 
an alternative state under stochastic perturbations. The occurrence  

of critical slowing down in the NDVI data during the EWS period 
within this model provides additional support for using the empiri-
cally derived EWS to predict state transitions.

The DLM was applied to the rest of the pixels in the study area to 
identify EWS. Temporal and spatial variations in the detected EWS 
were compared with aerially observed mortality provided by the 
US Forest Service each year since 200527. Mortality noted as caused 
by fire or human activities was excluded from the analyses. As the 
forest mortality map from the aerial surveys delineates geospa-
tial polygons within which some, rather than all, of the trees died, 
whereas the EWS provides a pixel-based estimate at a 30 m resolu-
tion, the comparison may introduce errors due to the mismatch in 
spatial scales. A comparison of the EWS was also performed against 
an incidence map of ALN, which has the same resolution as EWS 
and could be associated with leaf shedding or vegetation die-off29,30. 
Hereafter, ALN represents the occurrence of NDVI values lower 
than a threshold, lasting for at least half of the time in the following 
3 months. This threshold is set equal to the lower 20th percentile 
of all of the observed NDVI values in that month at a given pixel 
location. The sensitivity analysis indicates that the conclusions 
are robust with respect to the chosen thresholds (Supplementary 
Discussion, Supplementary Figs. 20–24, Supplementary Table 3).

Fraction of the area showing EWS
During 2005–2015, the Palmer drought severity index (PDSI)31 
indicated that the state of California underwent two major droughts 
spanning 2007–2009 and 2012–2015 (Fig. 2a). For the entire study 
area, the fraction of the area with observed mortality intensity 
greater than one tree per acre27, that is, mortality area, remained 
below 2% during the first drought but rapidly increased to 6.7% 
in 2015 (Fig. 2a). This sharp increase in mortality area during the 
second drought was in contrast to the temporal variation in PDSI 
vales, which gradually increased during 2012–2014 and remained 
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Fig. 1 | An example of EWS detected using the DLM. a, NDVI time series 
of a pixel in the southern Sierra b, Mean and uncertainty range of the time-
varying autocorrelation estimated using the DLM. The EWS identified 
when the mean autocorrelation exceeds a threshold (grey dashed line) are 
shown, calculated as the long-term (excluding a two-year warm-up period) 
average of the upper boundary of the uncertainty range. Shaded time 
ranges indicate the two droughts according to the PDSI. The x axis values 
mark 1 January for each year.
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Fig. 2 | Temporal trajectories of drought severity, mortality area and EWS 
area from 2005 to 2015. a, Monthly PDSI values31 for the state of California 
(black, left y axis) and the area with tree mortality (red, right y axis) from 
annual aerial surveys. b, Proportion of the area exhibiting EWS (blue, left 
y axis) and observed tree mortality (red, right y axis). c, Proportion of the 
area exhibiting EWS (blue, left y axis) and ALN (dark red, right y axis).  
The x axis values mark 1 January for each year.
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high afterwards. The temporal pattern of mortality follows a typi-
cal signature of critical transitions of ecosystems under slowly vary-
ing environmental drivers24. The fraction of the area showing an 
EWS exhibited similar temporal variation, with the areal fraction 
remaining around 10% during the first drought but then increasing 
to a high value of 16% by 2015 (Fig. 2b). The computed EWS area 
was generally larger than the mortality area, indicating that some 
trees operated under low resilience without loss of life. The extent of 
the area exhibiting EWS and ALN (Fig. 2c) depends on the thresh-
olds used to identify these metrics (Supplementary Discussion, 
Supplementary Fig. 20). However, all of the thresholds considered 
result in temporal trajectories of the area exhibiting EWS that fol-
low a similar pattern to ALN and mortality. Such prominent tempo-
ral correspondence highlights the potential of using low resilience 
(high autocorrelation) as an EWS to track interannual variations in 
forest mortality.

Lead time of the EWS
For areas where the EWS was detected before the observed mortal-
ity, 75% of the cases exhibited EWS more than 6 months before mor-
tality; 25% of the cases showed EWS more than 19 months before 
mortality (Fig. 3a). When compared with detected ALN (Fig. 3b), 
the EWS was identified earlier in 87% of the cases and 9 months ear-
lier in 50% of the cases, highlighting the advantage of the resilience-
based EWS over the drop in greenness in predicting mortality. 
Among differing species, the lead time of the EWS exhibited little 
difference with respect to mortality (Fig. 3a), but a larger difference 
with respect to ALN (Fig. 3b). For example, Juniperus (juniper) and 
Quercus (oak) experienced ALN much sooner after the first occur-
rence of the EWS than Abies (fir) and Pinus (pine), possibly due to 
their higher tendency to drop leaves under stress32,33.

Spatio-temporal estimation and prediction
Throughout the entire study area, mortality area and ALN area 
in each year were positively correlated with EWS area (P < 0.05) 
(Fig. 4a,b, black dots). However, they did not exhibit an apparent 

relation to the duration of the EWS (Supplementary Discussion, 
Supplementary Fig. 16). The relation between EWS area and mor-
tality area differed among the seven dominant species in the study 
area (Fig. 4a,b, coloured triangles). For example, for Quercus, 
Lithocarpus (tanoak), Pinus and Picea (spruce), 10% of the EWS 
area corresponded to 0.1%, 0.6%, 1.4% and 6.5% of mortality area, 
respectively. These differences imply that oaks are more likely to 
survive under low resilience than spruces and pines. The result is 
consistent with previous studies conducted in the western United 
States, where isohydric species such as pines and spruces that are 
susceptible to stomatal closure under stress were found to succumb 
at a higher frequency during prolonged drought, possibly due to 
carbon starvation34,35. In contrast, anisohydric species such as juni-
pers and oaks that adopt a more aggressive water-use strategy expe-
rienced less mortality, partly because of the smaller likelihood of 
stomatal closure and advantages arising from adjustments of fine 
root density and leaf area35,36. Notably, the correlations between 
EWS area and mortality area vanished when all species were aggre-
gated, even when they were located in the same eco-climate region 
(Supplementary Discussion, Supplementary Fig. 17). This distinc-
tion suggests that resilience signatures are more species dependent 
than eco-climate condition dependent, which could result from 
distinct species-specific traits15. The direct implication is that spe-
cies distribution information is necessary when translating detected 
EWS into mortality area.

Temporally, with a zero lead time (at the same time point when 
mortality was observed), 96% of the interannual variation in mor-
tality area for the entire study area was explained using species-
specific quadratic functions of EWS area (Fig. 5). When using EWS 
area detected 3, 6, 9 and 12 months earlier than observed mortal-
ity, the estimation accuracy gradually decreased to 91%, 77%, 33% 
and 41% respectively (Fig. 5, blue solid line). The leave-one-out  
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Fig. 3 | Exceedance probability of the lead time of the EWS. a,b, Lead 
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prediction accuracy dropped to around zero with longer lead times 
(≥6 months, Fig. 5, dashed blue line). The accuracy was improved 
by the addition of a linear EWS duration term, but was not improved 
further by additional quadratic or interaction terms (Supplementary 
Discussion, Supplementary Fig. 18).

The estimation accuracy of mortality was analysed at multiple 
spatial scales, ranging from the eco-climate region to 1/2°, 1/8° and 
3 km. In addition to the previously studied variables of topogra-
phy37 and community competition16, which are known to influence 
the spatial pattern of mortality, the contribution of the EWS area 
and duration were also found to be crucial based on the Bayesian 
Information Criterion (Supplementary Discussion, Supplementary 
Table 2). For years from 2005 to 2015, at a spatial resolution of 1/8° 
and with a 6 month lead time, the selected variables led to estimation 
accuracies of 0.89–0.93, areas under the receiver operating char-
acteristic curve (AUC) of 0.61–0.71 for mortality occurrence and 
coefficients of determination (R2) of 0.41–0.59 for mortality inten-
sity. The estimation performance decreases at finer spatial scales 
(Supplementary Discussion, Supplementary Fig. 19). For example, 
69%, 57%, 53% and 47% of the spatial variation in mortality inten-
sity can be explained at eco-climate region, 1/2°, 1/8° and 3 km 
spatial scales, respectively, for the median year. It is worth noting 
that compared with mortality observed in 2009 (Fig. 6a) and 2015  
(Fig. 6d) drought years at a 1/8° resolution, EWS characteristics 
together with information on topography and community competi-
tion can capture the spatial gradient of mortality within each year 
(Fig. 6b,e), and the overall higher mortality intensity in 2015. Spatial 
prediction using EWS detected 6 months ahead of observation 
showed that the overall spatial gradient and differences between the 
two drought years were ably captured (Fig. 6c, f). However, mortal-
ity rates were higher than predicted in the southern Sierra and the 
northeast of the study area in 2015 (Fig. 6d).

Discussion
A new approach for detecting a low-resilience-based EWS is pro-
posed. The lead time of the EWS and its ability to estimate and pre-
dict forest mortality are examined. Given that the EWS relies on the 
physical phenomenon of critical slowing down near a tipping point, 
its detection is made possible by integrating a theoretical basis 
of the resilience of nonlinear dynamical systems approaching a  
tipping point17, a statistical technique for inferring time-varying 

autocorrelation38 and ever-proliferating, high-spatial-resolution 
remote sensing images of NDVI. The tipping point here is forest 
mortality due to drought.

The reduction in resilience before climate-induced mortality can 
be viewed through the lens of the physiological response of vegeta-
tion under stress. During drought, heat stress and water deficits 
deplete plant water content30, induce malfunction of plant hydrau-
lic systems due to cavitation spread, and restrict carbon uptake and 
transport via stomatal closure10. These stresses could further limit 
the capability of plants to refill cavitated xylem and replenish carbon 
storage to support metabolism and growth11, thus handicapping 
recoverability from drought. The impact of the aforementioned 
stressors can be expressed as a slowed recovery rate of photosyn-
thetic capability and foliage biomass, which can be captured in 
NDVI dynamics39. As this derived dynamic metric allows the detec-
tion of low resilience directly from NDVI time series, it circumvents 
the uncertainties inherent in mortality predictions based on climate 
stress metrics alone. Furthermore, the EWS provides predictability 
without relying on the prediction of climate conditions due to its 
dependence on increased autocorrelation.

While the results demonstrate the potential of the EWS to cap-
ture the spatio-temporal variations in ALN and mortality over 
a range of parameters used to detect the EWS and across both 
snow-affected and snow-free regions (Supplementary Discussion, 
Supplementary Figs. 20–29), two major challenges remain. The first 
is the representativeness of the identified resilience signal based on 
autocorrelation of NDVI values, which can be impaired by missing 
data on cloudy and snow days, and the uncertainties inherent in 
NDVI data, such as those due to measurement error, varying atmo-
spheric composition over time and mixed signals from understory 
species. The effectiveness of EWS may also be affected by autocor-
relation signatures in latent driving factors other than the consid-
ered climate conditions, such as local nutrient availability and biotic 
interactions with microbes and insects. In addition, as the relation-
ship between the EWS and mortality is found to be species-specific, 
uncertainties in the species distribution map and the coexistence 
of multiple species may impair the accuracy of the EWS. Second, 
and perhaps more important, is the influence of stochastic pertur-
bations on vegetation stress within the lead time and across space. 
While low resilience indicates a higher probability of state transition 
for given stochastic perturbations, the likelihood of mortality may 
be enhanced (reduced) if climate conditions are more unfavour-
able (favourable) during the lead time. Such uncertainty of climate 
variations increases with lead time, which explains lower predic-
tion accuracies when using the EWS for longer lead times (Fig. 5). 
Similarly, mortality may also intensify at locations with moderate 
resilience due to localized insect/pathogen attack, which is in fact 
noted as the major causal agent of damage for 83% of forest mortal-
ity in the study area27. Such outbreaks are strongly influenced by 
climate-induced stresses, as the limited carbon uptake and trans-
port during periods of drought restrict resin production, which is 
known to be a major defence agent against biotic attack10,14,40. The 
increase in plant susceptibility further promotes insect/pathogen 
populations33. While these perturbations reduce the prediction 
accuracy of the EWS for mortality (especially at fine resolutions), 
given their general dependence on climate-induced stresses, this 
influence is smoothed out at coarser scales, resulting in a robust 
relation between low resilience and mortality.

EWS detection in this study benefits from the incorporation 
of knowledge of the dynamical system embedded in the struc-
ture of the DLM, including interannual variations, seasonal cycles 
and impacts of climate forcings, while using noise as a substitute 
for other unknown dynamics. Future work may investigate the 
role of other variables that are currently lumped as noise on for-
est resilience. Variables with large contributions, as quantified by 
the model likelihood, can be included in the DLM. Note that the 
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NDVI-based EWS used in this study represents one aspect of forest 
dynamics—that is, the stress-induced change in resilience. Several 
other aspects of forest dynamics have recently been assessed to dif-
ferentiate mortality and survival, including radial growth rate41,42 
from tree ring data, the fraction of non-photosynthetically active 
vegetation43, the long-term trend and abrupt jumps in vegetation 
indices from remote sensing44. Future studies may focus on the 
intercomparison and fusion of the aforementioned metrics, or 
use new state variables and vegetation indices to develop effective 
representations of the state and stability of forest. In addition, to 
improve mortality prediction, especially with long lead times and 
at fine spatial scales, future efforts may seek to combine the EWS 
with predicted climate conditions, hydrological states, and knowl-
edge of insect/pathogen habitation and mechanisms of infestation 
initiation and propagation during the lead time. EWS-based pre-
dictions could also benefit from better quantification of the thresh-
olds used to detect the EWS and from more accurate data of forest 
properties. It is worth noting that the lead time of the EWS with 
respect to ALN and mortality mostly lies within two years (Fig. 3), 
similar to the timescale of recovery from drought45. Such consis-
tency in timescales implies comparable probabilities of reaching 
full recovery or mortality starting from a stressed state. Further 
inquiry into the physiological controls on low resilience and their 
evolution towards eventual recovery or mortality for different spe-
cies is necessary. Investigation in this regard may involve a com-
parison of the low-resilience signal with observed physiological 
metrics across scales30,46.

Despite the aforementioned challenges, the results point towards 
significant opportunities ahead, given the apparent spatial and tem-
poral associations between the detected EWS and actual mortal-
ity. The lead time of the EWS will allow forest managers to assess 
resource risks, and possibly prescribe approaches to mitigate insect 
and fire risks and restore stand health through prescribed burn-
ing, variable density thinning, and altering age structure and spe-
cies composition47,48. The presented framework could be tested and 
applied to live monitoring of forest health under drought49, and 
near-term prediction of climate-induced mortality in other forested 
regions of the world.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41558-019-0583-9.
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Methods
Vegetation and climate data. The United States Forest Service conducts annual 
aerial surveys over the forested area in California, providing maps that consist of 
polygons delineating the areas with aerially observed mortality27. The observed 
mortality maps from 2005 to 2015 were re-projected and rasterized at 30 m 
resolution to match with remotely sensed NDVI data. Regions with a mortality 
intensity greater than 1 tree per acre based on the aerial survey data were used 
for analysis. Landsat 7 ETM+ surface reflectance product50 from June 1999 to 
December 2015 with a spatial resolution of 30 m and a temporal interval of 16 days 
was used to compute NDVI in the study area. Owing to the large amount of the 
original Landsat data, NDVI was computed and exported in tiles from Google 
Earth Engine. All the pixels in California with non-zero canopy closure for 
vegetation taller than 5 m were included in the study area on the basis of the 30 m 
resolution map of tree cover in 200051. Areas with mortality caused by human 
activities, as indicated in the aerial survey maps, were excluded from analysis. 
Pixels affected by fire each year were identified based on the MODIS Active 
Fire product52 and removed from estimation and prediction analysis. Data on 
cloudy or snow cover days were removed based on the ‘cfmask’ band, and were 
considered as missing data in DLM (Supplementary Methods, Supplementary 
Equations (4)–(6)). Climate conditions for daily precipitation, snow water 
equivalent, air temperature, incident shortwave radiation and water vapour 
pressure were obtained from Daymet V353. These daily climate conditions at 1 km 
spatial resolution were downscaled and averaged over the 16 days between two 
satellite observations to achieve consistent spatial and temporal resolutions with 
NDVI. Covariates of elevation54 and live basal area55 that quantify topography37 
and community competition16 were also rescaled to uniform scales for spatial 
estimation and prediction. The vegetation species distribution derived from field 
surveys during 1997–201456 was grouped to a genus level. The spatial distributions 
of dominant species covering an area greater than 1,000 km2 were used to develop 
species-specific relations between EWS and observed forest mortality and ALN.

Bayesian DLM. The Bayesian DLM consists of an observation equation and a state 
evolution equation; that is:

yt ¼ FTt θt þ vt ð1Þ

θt ¼ G θt�1 þ wt ð2Þ

where yt is the observed variable (NDVI) at time t after subtracting the long-term 
mean; Ft is a p-dimensional vector of known constants or regressors at time t, 
including climate variables and NDVI at time t − 1; θt is a p-dimensional state 
vector at time t, containing coefficients representing local mean, trend, seasonality, 
sensitivity to climate conditions and the lag-1 autocorrelation of NDVI; vt is the 
observation noise following a zero mean Gaussian distribution; G is a known p × p 
state evolution matrix considered to be time-invariant; wt is the state evolution 
noise at time t following a mean zero multivariate Gaussian distribution, and 
is independent of νt. Non-informative priors for θ0 and noises were provided 
(Supplementary Methods). At each time t, using forward filtering38,57, the posterior 
distribution of θt was estimated by combining the prior from the summary of 
history (y0, y1, …, yt−1) and the likelihood from current observation of yt, resulting 
in a time-varying posterior distribution of θt. Of particular interest is the temporal 
trajectory of the entry in θt quantifying the relation between yt and yt−1. This 
lag-1 autocorrelation was used as a time-varying measure of resilience. The EWS 
was then identified as the presence of this autocorrelation at a higher value than 
a threshold (Fig. 1). Theoretical details and controlled synthetic experiments 
demonstrating the efficacy of the DLM can be found in the Supplementary 
Methods. The source code of the DLM is available at https://github.com/YanlanLiu/
early-warning-signal-DLM.

Spatio-temporal estimation and prediction. Temporally, the total fraction of 
the area showing the EWS and the average EWS duration for each species within 
the entire study area were used to explain and predict mortality area across 
years. For the years 2005–2015, all pixels in the study area except those affected 
by fire within three years were aggregated to assess the R2 value of the temporal 
estimation. For prediction, one of the 11 years was left out each time and then 
predicted on the basis of the relations developed using the rest of the years. The 
accuracy was then computed by comparing the predictions with the observations. 
Estimation and prediction accuracies obtained using different combinations of 
EWS characteristics and lead times were examined (Fig. 5, Supplementary Fig. 18). 
Spatially, as the mortality area is highly zero-inflated, mortality occurrence (that 
is, whether the mortality area is greater than 0.1%) and mortality intensity (that 
is, the magnitude of the mortality area for pixels with mortality occurrence) were 
modelled separately using a Gaussian model and a binomial model, respectively. 
The analyses were conducted at spatial resolutions of 3 km, 1/8 degree, 1/2 degree, 

and eco-climate region. Candidate predictors include the fraction of the area 
showing the EWS, EWS duration, basal area and elevation in each pixel. Among 
the linear, quadratic and interaction terms of these predictors, the most informative 
predictors were selected on the basis of the Bayesian Information Criterion for 
each species (Supplementary Table 2). Apart from the selected predictors, a spatial 
Gaussian process was also incorporated to describe the spatial similarity among 
close neighbours. The point-based Gaussian process model is expressed as follows.

yðsÞ ¼ xT βþ wðsÞ þ σ ð3Þ

where y(s) is mortality intensity at location s in the Gaussian model and the logit 
of mortality occurrence probability in the binomial model; x is a vector containing 
the selected predictors at location s and β contains the corresponding coefficients; 
w(s) is the spatial effect of a Gaussian process with an exponential covariance 
function; and σ is the residual. Owing to the distinct relationship between the 
EWS and mortality area among species (Fig. 4), this spatial model was fitted for 
each of the dominant species separately. For the spatial estimation, the model was 
fitted for mortality occurrence and log-transformed intensity in each year using 
the functions spGLM and spLM, respectively, in the spBayes software58 in R59. A 
non-informative flat prior was used for β; and priors for w(s) were obtained from 
empirical variogram. Estimates were computed using posterior means of β and 
w(s) from 104 Markov chain Monte Carlo samples after a 2,000-sample burn-in 
period. For the spatial prediction, β was set as the coefficient of linear regression 
obtained using pixels dominated by a given species from all years; β was kept 
the same for all years for consistency in the accuracy evaluation. For operational 
purposes, all historical data should be used in the estimation, for which the 
representativeness is expected to improve as the number of samples increases. The 
spatial structure w(s) was considered as a random walk from that of the previous 
year60, with the mean spatial surface unchanged. In this way, the spatial distribution 
of mortality occurrence and intensity in a given year can be predicted using only 
historical data; that is, predictors observed at a given lead time and the mean spatial 
structure from the most recent year. Spatial accuracies for mortality occurrence in 
each year were assessed using the overall accuracy and the area under the receiver 
operating characteristic curve metrics (see Supplementary Discussion); accuracies 
for mortality intensity were assessed using the Bayesian R261.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available from the referenced sources.

Code availability
The source code for the Bayesian DLM usedto identify the EWS is available at 
https://github.com/YanlanLiu/early-warning-signal-DLM.
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Data analysis The software of "spBayes" in R was used for spatial analysis. An example script is publicly available at https://github.com/YanlanLiu/
spatial_analysis/. A dynamic linear model (DLM) has been developed in this study and is publicly available at https://github.com/
YanlanLiu/early-warning-signal-DLM/. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The aerial forest survey maps are available at https://www.fs.usda.gov/detail/r5/forest-grasslandhealth/?cid=fsbdev3_046696. Landsat 7 ETM+ surface reflectance 
product is available at https://landsat.usgs.gov/landsat-surface-reflectance-data-products. Tree cover map is available at http://earthenginepartners.appspot.com/
science-2013-global-forest. MODIS active fire product is available at https://fsapps.nwcg.gov/afm/gisdata.php. Daymet V3 climate data is available at https://
daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1328. GNN structure (species-size) map is available at https://lemma.forestry.oregonstate.edu/data/structure-maps. 
Existing vegetation map is available at https://www.fs.usda.gov/main/r5/landmanagement/gis. 



2

nature research  |  reporting sum
m

ary
O

ctober 2018

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This study proposes to use the temporal loss of resilience, a phenomenon often detected as a system approaches a tipping point, as 
an early warning signal (EWS) to predict the potential for forest mortality. An application of the proposed approach using remotely 
sensed images of vegetation dynamics in California forests indicates that EWS can often be detected prior to reduced greenness, 
between 6 to 19 months prior to mortality. The EWS shows species-specific relation with mortality, and is able to capture its spatial-
temporal variations. The results highlight EWS's potential for operational monitoring and near-term prediction of forest mortality.

Research sample The study uses existing dataset to identify EWS and analyze the predictability for mortality. The datasets and the corresponding 
sources include the following. The aerial forest survey maps are available at https://www.fs.usda.gov/detail/r5/forest-
grasslandhealth/?cid=fsbdev3_046696. Landsat 7 ETM+ surface reflectance product is available at https://landsat.usgs.gov/landsat-
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landmanagement/gis. 

Sampling strategy No sampling strategy is involved. 

Data collection Existing datasets are downloaded from the sources indicated above.

Timing and spatial scale The Landsat 7 and Daymet3 data used for the analyses range from 1999 to 2015. The available aerial survey data from 2005 to  2015 
are used. The datasets cover the forested area within the state of California, USA. 

Data exclusions As described in the methods, data points affected by fire and human activities are excluded from the analysis. These data points are 
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Reproducibility Results can be reproduced using existing datasets and the code/software used. Attempts to repeat the analyses were successfull. 

Randomization No randomization is involved. 
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described in the supporting information. These analysis support the robustness of the findings in this study. 
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